category
tags
type
slug
summary
status
date
icon
password
文章所有言论不构成任何投资建议!仅供技术理念学习交流。
交易投资有风险,我不建议任何人参与。尤其加密货币不受法律保护、交易风险极高!!请勿触碰!!!
MACD交易策略
MACD交易策略的特点是非常容易上手。半木夏(半神)曾通过此策略用1万块赚到了400万的盈利。

该交易系统适用于加密货币、股市、外汇、期货等具有良好交易深度和大量交易者参与的投机市场。
关于MACD
MACD指标 是用来判断趋势“强度"变化的,不是直接用来判断“趋势“的。MACD的背离说明“强度"发生了变化。"强度"的连续变化,累积后会逐步导致趋势的变化,也就是指标的连续背离,是量变引发质变的过程。
TradingView中添加指标
这里我们添加三个指标,分别是MACD、背离识别、ATR止损。
1. TradingView中添加MACD
这里需要注意,我的脚本中快线和慢线的周期都替换成斐波那契数值,分别是13和34。并且关闭了MACD线和信号线的显示。这里主要用直方图来看趋势的强度
MACD - Pine脚本
//@version=5 indicator(title="Moving Average Convergence Divergence", shorttitle="MACD", timeframe="", timeframe_gaps=true) // Getting inputs fast_length = input(title = "Fast Length", defval = 13) slow_length = input(title = "Slow Length", defval = 34) src = input(title = "Source", defval = close) signal_length = input.int(title = "Signal Smoothing", minval = 1, maxval = 50, defval = 9, display = display.data_window) sma_source = input.string(title = "Oscillator MA Type", defval = "EMA", options = ["SMA", "EMA"], display = display.data_window) sma_signal = input.string(title = "Signal Line MA Type", defval = "EMA", options = ["SMA", "EMA"], display = display.data_window) // Calculating fast_ma = sma_source == "SMA" ? ta.sma(src, fast_length) : ta.ema(src, fast_length) slow_ma = sma_source == "SMA" ? ta.sma(src, slow_length) : ta.ema(src, slow_length) macd = fast_ma - slow_ma signal = sma_signal == "SMA" ? ta.sma(macd, signal_length) : ta.ema(macd, signal_length) hist = macd - signal alertcondition(hist[1] >= 0 and hist < 0, title = 'Rising to falling', message = 'The MACD histogram switched from a rising to falling state') alertcondition(hist[1] <= 0 and hist > 0, title = 'Falling to rising', message = 'The MACD histogram switched from a falling to rising state') hline(0, "Zero Line", color = color.new(#787B86, 50)) plot(hist, title = "Histogram", style = plot.style_columns, color = (hist >= 0 ? (hist[1] < hist ? #26A69A : #B2DFDB) : (hist[1] < hist ? #FFCDD2 : #FF5252))) // plot(macd, title = "MACD", color = #2962FF) // plot(signal, title = "Signal", color = #FF6D00)

2. 添加识别背离的指标
背离指标 - Pine脚本
//@version=4 study("Divergence for Many Indicators v4", overlay = true, max_bars_back = 1000, max_lines_count = 400, max_labels_count = 400) prd = input(defval = 5, title = "Pivot Period", minval = 1, maxval = 50) source = input(defval = "Close", title = "Source for Pivot Points", options = ["Close", "High/Low"]) searchdiv = input(defval = "Regular", title = "Divergence Type", options = ["Regular", "Hidden", "Regular/Hidden"]) showindis = input(defval = "Full", title = "Show Indicator Names", options = ["Full", "First Letter", "Don't Show"]) showlimit = input(1, title="Minimum Number of Divergence", minval = 1, maxval = 11) maxpp = input(defval = 10, title = "Maximum Pivot Points to Check", minval = 1, maxval = 20) maxbars = input(defval = 100, title = "Maximum Bars to Check", minval = 30, maxval = 200) shownum = input(defval = true, title = "Show Divergence Number") showlast = input(defval = false, title = "Show Only Last Divergence") dontconfirm = input(defval = false, title = "Don't Wait for Confirmation") showlines = input(defval = true, title = "Show Divergence Lines") showpivot = input(defval = false, title = "Show Pivot Points") calcmacd = input(defval = true, title = "MACD") calcmacda = input(defval = true, title = "MACD Histogram") calcrsi = input(defval = true, title = "RSI") calcstoc = input(defval = true, title = "Stochastic") calccci = input(defval = true, title = "CCI") calcmom = input(defval = true, title = "Momentum") calcobv = input(defval = true, title = "OBV") calcvwmacd = input(true, title = "VWmacd") calccmf = input(true, title = "Chaikin Money Flow") calcmfi = input(true, title = "Money Flow Index") calcext = input(false, title = "Check External Indicator") externalindi = input(defval = close, title = "External Indicator") pos_reg_div_col = input(defval = color.yellow, title = "Positive Regular Divergence") neg_reg_div_col = input(defval = color.navy, title = "Negative Regular Divergence") pos_hid_div_col = input(defval = color.lime, title = "Positive Hidden Divergence") neg_hid_div_col = input(defval = color.red, title = "Negative Hidden Divergence") pos_div_text_col = input(defval = color.black, title = "Positive Divergence Text Color") neg_div_text_col = input(defval = color.white, title = "Negative Divergence Text Color") reg_div_l_style_ = input(defval = "Solid", title = "Regular Divergence Line Style", options = ["Solid", "Dashed", "Dotted"]) hid_div_l_style_ = input(defval = "Dashed", title = "Hdden Divergence Line Style", options = ["Solid", "Dashed", "Dotted"]) reg_div_l_width = input(defval = 2, title = "Regular Divergence Line Width", minval = 1, maxval = 5) hid_div_l_width = input(defval = 1, title = "Hidden Divergence Line Width", minval = 1, maxval = 5) showmas = input(defval = false, title = "Show MAs 50 & 200", inline = "ma12") cma1col = input(defval = color.lime, title = "", inline = "ma12") cma2col = input(defval = color.red, title = "", inline = "ma12") plot(showmas ? sma(close, 50) : na, color = showmas ? cma1col : na) plot(showmas ? sma(close, 200) : na, color = showmas ? cma2col: na) // set line styles var reg_div_l_style = reg_div_l_style_ == "Solid" ? line.style_solid : reg_div_l_style_ == "Dashed" ? line.style_dashed : line.style_dotted var hid_div_l_style = hid_div_l_style_ == "Solid" ? line.style_solid : hid_div_l_style_ == "Dashed" ? line.style_dashed : line.style_dotted // get indicators rsi = rsi(close, 14) // RSI [macd, signal, deltamacd] = macd(close, 12, 26, 9) // MACD moment = mom(close, 10) // Momentum cci = cci(close, 10) // CCI Obv = obv // OBV stk = sma(stoch(close, high, low, 14), 3) // Stoch maFast = vwma(close, 12), maSlow = vwma(close, 26), vwmacd = maFast - maSlow // volume weighted macd Cmfm = ((close-low) - (high-close)) / (high - low), Cmfv = Cmfm * volume, cmf = sma(Cmfv, 21) / sma(volume,21) // Chaikin money flow Mfi = mfi(close, 14) // Moneyt Flow Index // keep indicators names and colors in arrays var indicators_name = array.new_string(11) var div_colors = array.new_color(4) if barstate.isfirst // names array.set(indicators_name, 0, showindis == "Full" ? "MACD" : "M") array.set(indicators_name, 1, showindis == "Full" ? "Hist" : "H") array.set(indicators_name, 2, showindis == "Full" ? "RSI" : "E") array.set(indicators_name, 3, showindis == "Full" ? "Stoch" : "S") array.set(indicators_name, 4, showindis == "Full" ? "CCI" : "C") array.set(indicators_name, 5, showindis == "Full" ? "MOM" : "M") array.set(indicators_name, 6, showindis == "Full" ? "OBV" : "O") array.set(indicators_name, 7, showindis == "Full" ? "VWMACD" : "V") array.set(indicators_name, 8, showindis == "Full" ? "CMF" : "C") array.set(indicators_name, 9, showindis == "Full" ? "MFI" : "M") array.set(indicators_name,10, showindis == "Full" ? "Extrn" : "X") //colors array.set(div_colors, 0, pos_reg_div_col) array.set(div_colors, 1, neg_reg_div_col) array.set(div_colors, 2, pos_hid_div_col) array.set(div_colors, 3, neg_hid_div_col) // Check if we get new Pivot High Or Pivot Low float ph = pivothigh((source == "Close" ? close : high), prd, prd) float pl = pivotlow((source == "Close" ? close : low), prd, prd) plotshape(ph and showpivot, text = "H", style = shape.labeldown, color = color.new(color.white, 100), textcolor = color.red, location = location.abovebar, offset = -prd) plotshape(pl and showpivot, text = "L", style = shape.labelup, color = color.new(color.white, 100), textcolor = color.lime, location = location.belowbar, offset = -prd) // keep values and positions of Pivot Highs/Lows in the arrays var int maxarraysize = 20 var ph_positions = array.new_int(maxarraysize, 0) var pl_positions = array.new_int(maxarraysize, 0) var ph_vals = array.new_float(maxarraysize, 0.) var pl_vals = array.new_float(maxarraysize, 0.) // add PHs to the array if ph array.unshift(ph_positions, bar_index) array.unshift(ph_vals, ph) if array.size(ph_positions) > maxarraysize array.pop(ph_positions) array.pop(ph_vals) // add PLs to the array if pl array.unshift(pl_positions, bar_index) array.unshift(pl_vals, pl) if array.size(pl_positions) > maxarraysize array.pop(pl_positions) array.pop(pl_vals) // functions to check Regular Divergences and Hidden Divergences // function to check positive regular or negative hidden divergence // cond == 1 => positive_regular, cond == 2=> negative_hidden positive_regular_positive_hidden_divergence(src, cond)=> divlen = 0 prsc = source == "Close" ? close : low // if indicators higher than last value and close price is higher than las close if dontconfirm or src > src[1] or close > close[1] startpoint = dontconfirm ? 0 : 1 // don't check last candle // we search last 15 PPs for x = 0 to maxpp - 1 len = bar_index - array.get(pl_positions, x) + prd // if we reach non valued array element or arrived 101. or previous bars then we don't search more if array.get(pl_positions, x) == 0 or len > maxbars break if len > 5 and ((cond == 1 and src[startpoint] > src[len] and prsc[startpoint] < nz(array.get(pl_vals, x))) or (cond == 2 and src[startpoint] < src[len] and prsc[startpoint] > nz(array.get(pl_vals, x)))) slope1 = (src[startpoint] - src[len]) / (len - startpoint) virtual_line1 = src[startpoint] - slope1 slope2 = (close[startpoint] - close[len]) / (len - startpoint) virtual_line2 = close[startpoint] - slope2 arrived = true for y = 1 + startpoint to len - 1 if src[y] < virtual_line1 or nz(close[y]) < virtual_line2 arrived := false break virtual_line1 := virtual_line1 - slope1 virtual_line2 := virtual_line2 - slope2 if arrived divlen := len break divlen // function to check negative regular or positive hidden divergence // cond == 1 => negative_regular, cond == 2=> positive_hidden negative_regular_negative_hidden_divergence(src, cond)=> divlen = 0 prsc = source == "Close" ? close : high // if indicators higher than last value and close price is higher than las close if dontconfirm or src < src[1] or close < close[1] startpoint = dontconfirm ? 0 : 1 // don't check last candle // we search last 15 PPs for x = 0 to maxpp - 1 len = bar_index - array.get(ph_positions, x) + prd // if we reach non valued array element or arrived 101. or previous bars then we don't search more if array.get(ph_positions, x) == 0 or len > maxbars break if len > 5 and ((cond == 1 and src[startpoint] < src[len] and prsc[startpoint] > nz(array.get(ph_vals, x))) or (cond == 2 and src[startpoint] > src[len] and prsc[startpoint] < nz(array.get(ph_vals, x)))) slope1 = (src[startpoint] - src[len]) / (len - startpoint) virtual_line1 = src[startpoint] - slope1 slope2 = (close[startpoint] - nz(close[len])) / (len - startpoint) virtual_line2 = close[startpoint] - slope2 arrived = true for y = 1 + startpoint to len - 1 if src[y] > virtual_line1 or nz(close[y]) > virtual_line2 arrived := false break virtual_line1 := virtual_line1 - slope1 virtual_line2 := virtual_line2 - slope2 if arrived divlen := len break divlen // calculate 4 types of divergence if enabled in the options and return divergences in an array calculate_divs(cond, indicator)=> divs = array.new_int(4, 0) array.set(divs, 0, cond and (searchdiv == "Regular" or searchdiv == "Regular/Hidden") ? positive_regular_positive_hidden_divergence(indicator, 1) : 0) array.set(divs, 1, cond and (searchdiv == "Regular" or searchdiv == "Regular/Hidden") ? negative_regular_negative_hidden_divergence(indicator, 1) : 0) array.set(divs, 2, cond and (searchdiv == "Hidden" or searchdiv == "Regular/Hidden") ? positive_regular_positive_hidden_divergence(indicator, 2) : 0) array.set(divs, 3, cond and (searchdiv == "Hidden" or searchdiv == "Regular/Hidden") ? negative_regular_negative_hidden_divergence(indicator, 2) : 0) divs // array to keep all divergences var all_divergences = array.new_int(44) // 11 indicators * 4 divergence = 44 elements // set related array elements array_set_divs(div_pointer, index)=> for x = 0 to 3 array.set(all_divergences, index * 4 + x, array.get(div_pointer, x)) // set divergences array array_set_divs(calculate_divs(calcmacd, macd), 0) array_set_divs(calculate_divs(calcmacda, deltamacd), 1) array_set_divs(calculate_divs(calcrsi, rsi), 2) array_set_divs(calculate_divs(calcstoc, stk), 3) array_set_divs(calculate_divs(calccci, cci), 4) array_set_divs(calculate_divs(calcmom, moment), 5) array_set_divs(calculate_divs(calcobv, Obv), 6) array_set_divs(calculate_divs(calcvwmacd, vwmacd), 7) array_set_divs(calculate_divs(calccmf, cmf), 8) array_set_divs(calculate_divs(calcmfi, Mfi), 9) array_set_divs(calculate_divs(calcext, externalindi), 10) // check minimum number of divergence, if less than showlimit then delete all divergence total_div = 0 for x = 0 to array.size(all_divergences) - 1 total_div := total_div + round(sign(array.get(all_divergences, x))) if total_div < showlimit array.fill(all_divergences, 0) // keep line in an array var pos_div_lines = array.new_line(0) var neg_div_lines = array.new_line(0) var pos_div_labels = array.new_label(0) var neg_div_labels = array.new_label(0) // remove old lines and labels if showlast option is enabled delete_old_pos_div_lines()=> if array.size(pos_div_lines) > 0 for j = 0 to array.size(pos_div_lines) - 1 line.delete(array.get(pos_div_lines, j)) array.clear(pos_div_lines) delete_old_neg_div_lines()=> if array.size(neg_div_lines) > 0 for j = 0 to array.size(neg_div_lines) - 1 line.delete(array.get(neg_div_lines, j)) array.clear(neg_div_lines) delete_old_pos_div_labels()=> if array.size(pos_div_labels) > 0 for j = 0 to array.size(pos_div_labels) - 1 label.delete(array.get(pos_div_labels, j)) array.clear(pos_div_labels) delete_old_neg_div_labels()=> if array.size(neg_div_labels) > 0 for j = 0 to array.size(neg_div_labels) - 1 label.delete(array.get(neg_div_labels, j)) array.clear(neg_div_labels) // delete last creted lines and labels until we met new PH/PV delete_last_pos_div_lines_label(n)=> if n > 0 and array.size(pos_div_lines) >= n asz = array.size(pos_div_lines) for j = 1 to n line.delete(array.get(pos_div_lines, asz - j)) array.pop(pos_div_lines) if array.size(pos_div_labels) > 0 label.delete(array.get(pos_div_labels, array.size(pos_div_labels) - 1)) array.pop(pos_div_labels) delete_last_neg_div_lines_label(n)=> if n > 0 and array.size(neg_div_lines) >= n asz = array.size(neg_div_lines) for j = 1 to n line.delete(array.get(neg_div_lines, asz - j)) array.pop(neg_div_lines) if array.size(neg_div_labels) > 0 label.delete(array.get(neg_div_labels, array.size(neg_div_labels) - 1)) array.pop(neg_div_labels) // variables for Alerts pos_reg_div_detected = false neg_reg_div_detected = false pos_hid_div_detected = false neg_hid_div_detected = false // to remove lines/labels until we met new // PH/PL var last_pos_div_lines = 0 var last_neg_div_lines = 0 var remove_last_pos_divs = false var remove_last_neg_divs = false if pl remove_last_pos_divs := false last_pos_div_lines := 0 if ph remove_last_neg_divs := false last_neg_div_lines := 0 // draw divergences lines and labels divergence_text_top = "" divergence_text_bottom = "" distances = array.new_int(0) dnumdiv_top = 0 dnumdiv_bottom = 0 top_label_col = color.white bottom_label_col = color.white old_pos_divs_can_be_removed = true old_neg_divs_can_be_removed = true startpoint = dontconfirm ? 0 : 1 // used for don't confirm option for x = 0 to 10 div_type = -1 for y = 0 to 3 if array.get(all_divergences, x * 4 + y) > 0 // any divergence? div_type := y if (y % 2) == 1 dnumdiv_top := dnumdiv_top + 1 top_label_col := array.get(div_colors, y) if (y % 2) == 0 dnumdiv_bottom := dnumdiv_bottom + 1 bottom_label_col := array.get(div_colors, y) if not array.includes(distances, array.get(all_divergences, x * 4 + y)) // line not exist ? array.push(distances, array.get(all_divergences, x * 4 + y)) new_line = showlines ? line.new(x1 = bar_index - array.get(all_divergences, x * 4 + y), y1 = (source == "Close" ? close[array.get(all_divergences, x * 4 + y)] : (y % 2) == 0 ? low[array.get(all_divergences, x * 4 + y)] : high[array.get(all_divergences, x * 4 + y)]), x2 = bar_index - startpoint, y2 = (source == "Close" ? close[startpoint] : (y % 2) == 0 ? low[startpoint] : high[startpoint]), color = array.get(div_colors, y), style = y < 2 ? reg_div_l_style : hid_div_l_style, width = y < 2 ? reg_div_l_width : hid_div_l_width ) : na if (y % 2) == 0 if old_pos_divs_can_be_removed old_pos_divs_can_be_removed := false if not showlast and remove_last_pos_divs delete_last_pos_div_lines_label(last_pos_div_lines) last_pos_div_lines := 0 if showlast delete_old_pos_div_lines() array.push(pos_div_lines, new_line) last_pos_div_lines := last_pos_div_lines + 1 remove_last_pos_divs := true if (y % 2) == 1 if old_neg_divs_can_be_removed old_neg_divs_can_be_removed := false if not showlast and remove_last_neg_divs delete_last_neg_div_lines_label(last_neg_div_lines) last_neg_div_lines := 0 if showlast delete_old_neg_div_lines() array.push(neg_div_lines, new_line) last_neg_div_lines := last_neg_div_lines + 1 remove_last_neg_divs := true // set variables for alerts if y == 0 pos_reg_div_detected := true if y == 1 neg_reg_div_detected := true if y == 2 pos_hid_div_detected := true if y == 3 neg_hid_div_detected := true // get text for labels if div_type >= 0 divergence_text_top := divergence_text_top + ((div_type % 2) == 1 ? (showindis != "Don't Show" ? array.get(indicators_name, x) + "\n" : "") : "") divergence_text_bottom := divergence_text_bottom + ((div_type % 2) == 0 ? (showindis != "Don't Show" ? array.get(indicators_name, x) + "\n" : "") : "") // draw labels if showindis != "Don't Show" or shownum if shownum and dnumdiv_top > 0 divergence_text_top := divergence_text_top + tostring(dnumdiv_top) if shownum and dnumdiv_bottom > 0 divergence_text_bottom := divergence_text_bottom + tostring(dnumdiv_bottom) if divergence_text_top != "" if showlast delete_old_neg_div_labels() array.push(neg_div_labels, label.new( x = bar_index, y = max(high, high[1]), text = divergence_text_top, color = top_label_col, textcolor = neg_div_text_col, style = label.style_label_down )) if divergence_text_bottom != "" if showlast delete_old_pos_div_labels() array.push(pos_div_labels, label.new( x = bar_index, y = min(low, low[1]), text = divergence_text_bottom, color = bottom_label_col, textcolor = pos_div_text_col, style = label.style_label_up )) alertcondition(pos_reg_div_detected, title='Positive Regular Divergence Detected', message='Positive Regular Divergence Detected') alertcondition(neg_reg_div_detected, title='Negative Regular Divergence Detected', message='Negative Regular Divergence Detected') alertcondition(pos_hid_div_detected, title='Positive Hidden Divergence Detected', message='Positive Hidden Divergence Detected') alertcondition(neg_hid_div_detected, title='Negative Hidden Divergence Detected', message='Negative Hidden Divergence Detected') alertcondition(pos_reg_div_detected or pos_hid_div_detected, title='Positive Divergence Detected', message='Positive Divergence Detected') alertcondition(neg_reg_div_detected or neg_hid_div_detected, title='Negative Divergence Detected', message='Negative Divergence Detected')
黄线标识出底背离,紫线标识出顶背离

3. 添加ATR自动止损指标
ATR 止损 - Pine脚本
//@version=4 study(title="Average True Range Stop Loss Finder", shorttitle="ATR", overlay=true) length = input(title="Length", defval=14, minval=1) smoothing = input(title="Smoothing", defval="RMA", options=["RMA", "SMA", "EMA", "WMA"]) m = input(1.5, "Multiplier") src1 = input(high) src2 = input(low) pline = input(true, "Show Price Lines") col1 = input(color.blue, "ATR Text Color") col2 = input(color.teal, "Low Text Color",inline ="1") col3 = input(color.red, "High Text Color",inline ="2") collong = input(color.teal, "Low Line Color",inline ="1") colshort = input(color.red, "High Line Color",inline ="2") ma_function(source, length) => if smoothing == "RMA" rma(source, length) else if smoothing == "SMA" sma(source, length) else if smoothing == "EMA" ema(source, length) else wma(source, length) a = ma_function(tr(true), length) * m x = ma_function(tr(true), length) * m + src1 x2 = src2 - ma_function(tr(true), length) * m p1 = plot(x, title = "ATR Short Stop Loss", color= colshort, transp=20, trackprice = pline ? true : false) p2 = plot(x2, title = "ATR Long Stop Loss", color= collong, transp=20, trackprice = pline ? true : false) var table Table = table.new(position.bottom_center, 3, 1, border_width = 3) f_fillCell(_table, _column, _row, _value, _timeframe) => _cellText = _timeframe+ tostring(_value, "#.#") table.cell(_table, _column, _row, _cellText, text_color = col1) table.cell_set_text_color(Table, 1, 0, color.new(col3, transp = 0)) table.cell_set_text_color(Table, 2, 0, color.new(col2, transp = 0)) if barstate.islast f_fillCell(Table, 0, 0, a, "ATR: " ) f_fillCell(Table, 1, 0, x, "H: " ) f_fillCell(Table, 2, 0, x2, "L: " )
图表中,K线上下分别多了一条红色和绿色的止损线,这两条现代表我们进场价格的最高(低)点加上(减去)ATR的数值。以此作为我们的止损点位。
ATR指标
真实平均波动区间(Average True Range)是一个用来衡量价格波动性的指标,由威尔德(Wilder)所发明,Wilder也是RSI指标的发明者。其与布林通道和ADX两个指标不同的是,由于在它的计算过程中加入了跳空等因素,因此它能够更加真实地反映出价格的波动情况,也正因如此,它被称为“真实”波动区间。

交易法则
此策略并非100%有效,但是能提供一个交易思路。
做多
同时满足下面三个条件:
- K线低点连续创新低
- MACD柱状图连续底背离:零轴下方的红色柱状图波峰连续创新高
- 关键K线:
MACD深色柱子转成浅色的第一根柱子所对应的K线

止损
多单的止损设置在关键K线的低点,再减去ATR的数值。这实际上就是我们的自动止损工具所提供的那条线的位置和价格。
止盈
止盈方面,我们采用固定盈亏比和右侧止盈相结合的策略。比如,我们可以在1:1.5的盈亏比位置止盈一半仓位,另一半仓位则采用右侧止盈,以博取更高的利润。。

做空:
同时满足下面三个条件:
- K线高点连续创新高
- MACD柱状图连续顶背离,零轴上方的绿色柱状图波峰连续创新低
- 关键K线: MACD深色柱子转成浅色的第一根柱子所对应的K线

止损
关键K线高点+ATR
止盈
止盈方面,我们采用固定盈亏比和右侧止盈相结合的策略。比如,我们可以在1:1.5的盈亏比位置止盈一半仓位,另一半仓位则采用右侧止盈,以博取更高的利润。

提高胜率的补充建议
- 相邻波峰高度差异最好在30%以上。当然,高度差异越大越好。如果出现连续两次或三次这样的背离机会,趋势反转的可能性就更大。因此,对于出现明显背离但规律性不好的情况,我们可以主动过滤掉,这样可能会提高我们的胜率。
3,多策略结合:建议你先进行大量广泛的复盘,总结出更多规律。然后,将多种策略结合起来,可以提高胜率和盈利能力。
- 离策略本质上是一个顺应趋势的交易系统。我们在价格不断创新高的过程中捕捉做空机会,在价格不断创新低的过程中捕捉做多机会。这与大多数顺趋势交易系统有所不同。因此,我们必须严格遵守进场和止损条件。
Loading...